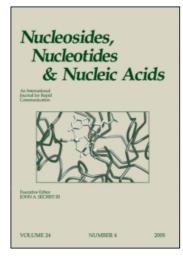
This article was downloaded by:


On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

A New Approach to the Synthesis of Benzothiazole, Benzoxazole, and Pyridine Nucleosides as Potential Antitumor Agents

Ahmed I. Khodaira; Najim A. Al-Masoudib; Jean-Pierre Gessonc

^a Chemistry Department, Faculty of Education, Tanta University (Kafr El-Sheikh Branch), Kafr El-Sheikh, Egypt ^b Fakultät für Chemie, Universität Konstanz, Konstanz, Germany ^c Laboratoire de Chimie XII, Université de Poitiers et CNRS, Poitiers, France

Online publication date: 27 October 2003

To cite this Article Khodair, Ahmed I., Al-Masoudi, Najim A. and Gesson, Jean-Pierre (2003) 'A New Approach to the Synthesis of Benzothiazole, Benzoxazole, and Pyridine Nucleosides as Potential Antitumor Agents', Nucleosides, Nucleotides and Nucleic Acids, 22:11,2061-2076

To link to this Article: DOI: 10.1081/NCN-120026407 URL: http://dx.doi.org/10.1081/NCN-120026407

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 22, No. 11, pp. 2061–2076, 2003

A New Approach to the Synthesis of Benzothiazole, Benzoxazole, and Pyridine Nucleosides as Potential Antitumor Agents

Ahmed I. Khodair, 1,* Najim A. Al-Masoudi, 2 and Jean-Pierre Gesson 3

 ¹Chemistry Department, Faculty of Education, Tanta University (Kafr El-Sheikh Branch), Kafr El-Sheikh, Egypt
 ²Fakultät für Chemie, Universität Konstanz, Konstanz, Germany
 ³Laboratoire de Chimie XII, Université de Poitiers et CNRS, Poitiers, France

ABSTRACT

A modified nitrogen and sulfur glycosylation reaction involving benzothiazole benzoxazole and pyridine nucleoside bases with furanose and pyranose sugars are described. Conformational analysis has been studied by homo- and heteronuclear two-dimensional NMR methods (2D DFQ-COSY, HMQC and HMBC). The *N* and *S* sites of glycosylation were determined from the ¹H, ¹³C heteronuclear multiple-quantum coherence (HMQC) experiments. All the deprotected nucleosides were tested for their potential antitumor activity.

2061

DOI: 10.1081/NCN-120026407 Copyright © 2003 by Marcel Dekker, Inc.

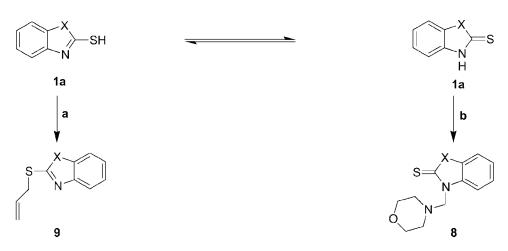
Marcel Dekker, Inc.
270 Madison Avenue, New York, New York 10016

1525-7770 (Print); 1532-2335 (Online)

www.dekker.com

^{*}Correspondence: Ahmed I. Khodair, Chemistry Department, Faculty of Education, Tanta University (Kafr El-Sheikh Branch), Kafr El-Sheikh, Egypt; Fax: 20-472-23415; E-mail: khodair_62@yahoo.com.

INTRODUCTION


Important biological processes are carried out by carbohydrate processing enzymes and in particular by glycosides. [1-3] Their roles in therapeutic and biological applications as a consequence of modifying or blocking their action have attracted the attention of organic chemists and biochemists. These strategies have been applied to glycosides involved in intestinal digestion, post-translational processing of glycoproteins, and lysosomal catabolism of glycoconjugates. Thus, a number of them show promise as antidiabetes, [4] antitumor metastasis, [5] and antiobesity drugs, [6] and as antifeedents^[7] and antivirals.^[8–11] We have recently reported that S-glycosylated hydantoin derivatives showed potent activity against the herpes simplex virus (HSV).[12] the human immunodeficiency virus (HIV)[13] and the leukemia subpanel.^[14] The importance of such compounds prompted our interest in the synthesis and chemistry of this type of compounds. In the course of identifying new chemical structures which may serve as leads for designing novel antitumor and antiviral agents, we were particularly interested in S-glycosylation of 2-thiohydantoins.^[12–16] In this respect, it seemed worth-while to link the benzothiazole, benzoxazole and pyridine to an hydrophilic moiety such as a glycoside. It was thus anticipated a better water solubility of these heterocycles and an improved selectivity toward cancer cells which are known to be specifically enriched in carbohydrate receptors such as lectins. [17,18] The present work describes the synthesis of a series of nitrogen glycosylated and their sulfur analogues bearing benzothiazole, benzoxazole and pyridine bases via new synthetic strategies. Furthermore, the confirmation of their most stable conformation and the antitumor screening has been studied.

RESULTS AND DISCUSSION

The silvlation of the nucleoside bases 1a-c was accomplished with bis(trimethylsilyl)-acetamide (BSA) in anhydrous MeCN at 70-80°C, and furnished the trimethylsilylated derivatives 2a-c. These derivatives were condensed, devised by Vorbrüggen et al., [21] with 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose (3) in the presence of trimethylsilyl trifluoromethyanesulfonate (TMSOTf) as a catalyst at 70-80°C for 60 min. The nucleosides **4a,b**^[22] were isolated by silica gel column chromatography in 72–76% yields. Removal of the acetyl groups from the glycon moiety of 4a,b with 16% NH₃/MeOH solution at r. t. furnished 3-(β-D-ribofuranosyl)-2-thiobenzothiazole (5a)^[22] and 3-(β -D-ribofuranosyl)-2-thiobenzoxazole (5b)^[22] instead of N-(hydroxy-2-phenyl)-N-(β-D-ribofuranosyl)thiocarbamide, [22] respectively (Sch. 1). The proton spin systems were identified from DFQ-COSY^[23] spectra. The anomeric coupling constants of 5a is a typical for the β -configurated ribofuranoses (7.5 Hz). The rotating from nuclear overhauser effect (NOE)^[24–26] between 1'-H at δ_H 6.84 and 4'-H is an additional proof for β -configuration, and these data are in agreement with those reported earlier by Gosselin et al. [22] The ribosylation occurred at the *N*-site of the benzothiazole 1a. This was also visible in the HMBC spectrum where the anomeric proton of 5a showed cross peak to C-3a (only one rotator about the glycosidic linkage was observed), and no such correlation to C-7a was shown, indicating for the N-glycosylation and not the S-glycosylation. Protons bearing carbon were detected

Scheme 1. Reagents and conditions: (a) MeCN, BSA, 70–80°C; (b) 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose (3), TMSOTf, 70–80°C; (c) 16% NH₃/MeOH, r. t.

in HMQC spectra. ^[27] Carbon 2 resonates at highest field ($\delta_{\rm C}$ 191.2) due to the shielding nature around thiocarbonyl bond, proving the *N*-glycosylation and excluding substitution at the sulfur atom (Sch. 1). These data are also in agreement with the ¹³C-NMR spectrum of 3-(4-morpholinomethyl)-2-thiobenzothiazole **8**, ^[28] which in turn was prepared from the reaction of **1a** with morpholine and formaldehyde in EtOH at r. t., since the thiocarbonyl group at C-2 appears at $\delta_{\rm C}$ 190.1 (Sch. 2). More evidence for the formation of *N*-nucleoside **4a** was obtained from the comparison with the spectral data obtained by Schantle et al. ^[29] during the *N*-methylation of *N*-substituted 4-methyl-5-phenyl-1*H*-imidazole-2-thione. On the other hand,

Scheme 2. Reagents and conditions: (a) Allyl iodide, NaOH, H₂O, r. t.; (b) HCHO, morpholine, EtOH, r. t.

2c was condensed with 3 under the same above conditions to give 6 (78%), after purification by chromatography. Deblocking of 6 with 16% NH₃/MeOH solution at r. t. furnished 7 (Sch. 1). The structure of 7 was established on its ¹H, ¹³C-NMR and mass spectra. The doublet at δ 5.80 ($J_{1',2'}$ 4.57 Hz) was attributed to the anomeric proton of the β-configuration, whereas the ¹³C NMR spectrum was characterized by a singlet at δ 166.1, corresponding to C-2, then proving S-glycosylation and excluding substitution at the nitrogen atom (Sch. 1).

These data are in agreement with the ¹³C-NMR spectrum of 2-allylmercaptobenzothiazole (9), [30] which was prepared from the reaction of 1a with allyl iodide in aqueous NaOH at r. t. and characterized by the appearance of the mercapto group at δ_C 165.9. (Sch. 2). Again, these data are also in agreement with those of S-methylation of some derivatives of N-substituted-1H-imidazole-2-thione. [29]

When compound 1a was reacted with 1.1 equivalent of NaH in anhydrous MeCN followed by the addition of 1.1 equivalent of 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl bromide(10),^[31] the 2-(2',3',4',6'-tetra-O-acetyl-β-D-glucopyranosyl)-2thiobenzothiazole (13a)^[32] and $3-(2',3',4',6'-tetra-O-acetyl-\beta-D-glucopyranosyl)-2$ thiobenzothiazole (14a)^[32] in 84 and 4% yield, respectively, were obtained. Similarly, the treatment of compounds 1b and 1c with 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl bromide $(11)^{[31]}$ and 10 under the same above conditions afforded 2-(2',3',4',6'tetra-O-benzoyl-β-D-glucopyranosyl)-2-thiobenzoxazole (13b) and 5-methoxy-2-(2',3',4',6'-tetra-O-acetyl-β-D-glucopyranosyl)-2-thiobenzothiazole (13c) in 82 and 83% yield, respectively.

This series was extended with more sugar moieties such as the acylated galactose bromide^[33] bearing the benzothiazole precursors to examine their potential biological activity. Thus, the galactose bromide derivative 12 was selected to react with: 1a, giving 13d^[34] in 90% yield, 1b affording 13e in 45% yield and 14b in 38% yield, and finally with 1c to yield 13f in 60% yield and 14c in 22% yield, respectively. Deprotection of 13a-f and 14b,c with saturated 16% NH₃/MeOH solution at r. t. furnished the corresponding free nucleosides 15a-f and 16a,b, respectively (Sch. 3).

b

c

d

e

f

b

c

O

S

Η

OMe

Ac

Ac

Η

Η

Scheme 3. Reagents and conditions: (a) NaH, MeCN, r. t.; (b) 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (10) or 2,3,4,6-tetra-O-benzoyl-α-D-glucopyranosyl bromide (11) or 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide (12), r. t.; (c) 16% NH₃/MeOH, r. t.

OAc

OAc

b

S

Η

Η

OH

The structures of 15a-f and 16a,b were confirmed on the basis of their spectroscopic and mass spectral data and the earlier results of Zinner and Peseke. [32] The mass spectrum of 15e showed a molecular ion peak at m/z 313, while the ¹H-NMR spectrum showed a doublet at δ_H 5.36 with $J_{1',2'}$ 9.8 Hz, corresponding to the 1'-H and indicating a β -configuration. C-2 of **15e** resonated at δ_C 162.5, establishing the S-glycosylation. The structure of 16a was assigned from the mass (molecular ion peak at m/z 313), ¹H and ¹³C-NMR spectra. The anomeric proton appeared as a doublet at

 $\delta_{\rm H}$ 6.03 ($J_{1',2'}$ 9.1 Hz), corresponding to the diaxial coupling and then the β-configuration. The $^{13}{\rm C}$ NMR spectrum was characterized by a singlet at $\delta_{\rm C}$ 181.4, corresponding to C-2, and then proving the *N*-glycosylation. Furthermore, the heteronuclear spectra (HMQC, DFQ-COSY) of **16a,b** showed $^3J_{\rm C,H}$ correlation between C-3a and 1'-H, which is an additional proof for *N*-glycosylation, since no such correlation was shown by **15a-f**, which is indication of the *S*-glycosylation.

When 2-mercapto-pyridine 17 was reacted with 1.1 equivalent of NaH in anhydrous MeCN followed by addition of 1.1 equivalent of 10 and 12, two products $18a^{[35]}$ and $18b^{[35]}$ were isolated in 77 and 86% yields, respectively. On the other hand, silylation of 17 with BSA in anhydrous MeCN at 70–80°C afforded the trimethylsilylated derivative 20. Condensation of 20, by applying Vorbrüggen et al. [21] method, with 3 in the presence of TMSOTf as catalyst at 70–80°C for 60 min gave, after purification by column chromatography, $21^{[36]}$ (72% yield). Deblocking of 18a,b and 21 with 16% NH₃/MeOH solution at r. t. furnished $19a^{[37]}$ (85%), 19b (97%) and 22 (90%), respectively (Sch. 4). The structures of 18–22 were identified by the spectroscopic methods, since the structure of 19b was supported by the mass

Scheme 4. Reagents and conditions: (a) **10** or **12**, NaH, MeCN, r. t.; (b) 16% NH₃/MeOH, r. t.; (c) MeCN, BSA, 70–80°C; (d) **3**, TMSOTf, 70–80°C.

spectra, which showed a molecular ion peak at m/z 273. 1'-H appeared as a doublet at $\delta_{\rm H}$ 5.07 with $J_{1',2'}$ 9.7 Hz, confirming the diaxial coupling with the β-configuration. C-2 at **19b** resonates at $\delta_{\rm C}$ 158.8, proving the *S*-glycosylation and excluding substitution at the nitrogen atom. The mass spectrum of **21** was characterized by a molecular ion peak at m/z 369, while the resonance at $\delta_{\rm H}$ 6.09 ($J_{1',2'}$ 4.6 Hz) as a doublet was attributed to 1'-H with a β-configuration, and these data are in agreement with the ¹H-NMR data of 1-(2-thiopyridyl-2,3-*O*-isopropylidene-5-*O*-(*tert*-butyldiphenyl-silyl)-β-D-ribofuranose and its α-anomer (the anomeric protons appeared at $\delta_{\rm H}$ 6.19 and 6.68, respectively). ^[38] The ¹³C NMR spectrum of compound **22** was characterized by a singlet at $\delta_{\rm C}$ 158.1, corresponding to C-2, and again proving the *S*-glycosylation.

In conclusion, we have described the successful syntheses of benzothiazole, benzoxazole and pyridine nucleosides bearing the furanose and pyranose sugar moieties, and established their configuration and most stable conformation by analysis of their spectral data (ROESY, DFQ-COSY, HMBC and HMQC NMR spectra). Compounds **5a,b**, **15a-f**, **16a,b**, **19a,b** and **22** were screened against leukemia-1210^[39,40] and were found to be inactive. The antiviral and the other antitumor activities of the prepared compounds are under investigation.

EXPERIMENTAL

General Methods. Melting points (°C) are uncorrected. Aluminum sheets coated with silica gel 60 F_{254} (Merck) were used for TLC. Viewing under a short wavelength UV lamp effected detection. IR spectra (KBr disc) were obtained on a Pye Unicam spectra 1000. NMR spectra were measured in DMSO- d_6 and CDCl₃ using SiMe₄ as internal reference on a Bruker Advance DPX 300 MHz spectrometer. Analytical data were obtained from the Service Central de Microanalyse (CNRS, Lyon). Mass spectra were recorded by EI on a Varian MAT 311A spectrometer and FAB on a Kratos MS 50 spectrometer.

3-(2',3',5'-Tri-O-acetyl-β-D-ribofuranosyl)-2-thiobenzothiazole (4a). *General Procedure*: A suspension of **1a** (835 mg, 5.0 mmol) in anhydrous MeCN (25 mL) and BSA (1.25 mL, 5.0 mmol) was heated at 70–80°C for 30 min. 1,2,3,5-Tetra-*O*-acetyl-β-D-ribofuranose (3) (1.75 g, 5.0 mmol) dissolved in anhydrous MeCN (25 mL) was added to the reaction mixture via a cannula, followed by the addition of TMSOTf (1.0 mL, 1.0 mmol) and the reaction mixture was heated at 70–80°C for 1 h. After cooling, a saturated aqueous NaHCO₃ solution was added and the resulting mixture extracted with CH₂Cl₂. The combined organic fractions were washed with saturated NaCl solution, dried (MgSO₄), filtered, and evaporated to dryness. The residue obtained was purified by flash chromatography (eluent EtOAc/petroleum ether 40–60°C, 1:3) to give **4a** (1.62 g, 76%) as a white foam (lit.^[22] mp 134–136°C, 75%). MS; m/z: 425 (M⁺). ¹H-NMR (CDCl₃): δ 2.05, 2.16, 2.22, (3s, 9H, 3 Ac), 4.12 (dd, J=7.1, 7.1 Hz, 1H, 5'-H), 4.36 (m, 2H, 4'-H, 5"-H), 5.52 (dd, J=4.3, 6.7 Hz, 1H, 3'-H), 5.79 (dd, J=6.9, 6.9 Hz, 1H, 2'-H), 7.22 (d, J=6.8 Hz, 1H, 1'-H), 7.27–7.62 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.3, 20.5, 20.8 (3 Ac),

270 Madison Avenue, New York, New York 1001

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved

62.6 (C-5'), 68.7 (C-3'), 69.7 (C-2'), 79.4 (C-4'), 88.1 (C-1'), 113.2, 121.4, 125.1, 125.9, 126.7, 139.4 (C-Ar), 169.4, 169.7, 170.1 (3 CO), 191.8 (C-2).

3-(2',3',5'-Tri-O-acetyl-β-D-ribofuranosyl)-2-thiobenzoxazole (4b). From (755 mg, 5.0 mmol) in the manner described for 4a. Yield 1.47 g (72%) as a white foam (lit. [22] mp 107–108°C, 47%). MS; m/z: 409 (M⁺). ¹H-NMR (CDCl₃): δ 2.07, 2.18; 2.21 (3s, 9H, 3 Ac), 4.12 (dd, J = 7.0, 7.1 Hz, 1H, 5'-H), 4.40 (m, 2H, 4'-H, 5"-H), 5.48 (dd, J = 4.4, 6.7 Hz, 1H, 3'-H), 5.70 (dd, J = 6.9, 6.9 Hz, 1H, 2'-H), 6.67 (d, 1H, $J = 7.0 \,\text{Hz}$, 1'-H), 7.24–7.47 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.2, 20.4, 20.6 (3 Ac), 62.7 (C-5'), 69.2 (C-3'), 70.0 (C-2'), 79.9 (C-4'), 88.3 (C-1'), 110.4, 110.8, 124.6, 124.7, 128.9, 146.8 (C-Ar), 169.3, 169.5, 169.9 (3 CO), 180.1 (C-2).

3-(β-D-Ribofuranosyl)-2-thiobenzothiazole (5a). *General Procedure*: To a stirred solution of 4a (850 mg, 2.0 mmol) in anhydrous MeOH (20 mL) was added a solution of 16% NH₃/MeOH (10 mL) at r. t. and the stirring was continued for 16 h. The solvent was evaporated and the residue was chromatographed on silica gel using MeOH, in gradient, (0-5%) and CH₂Cl₂ as eluent to give **5a** (514 mg, 86%) as a white solid, mp 129–131°C (lit. [22] mp 153–154°C, 91%). MS; m/z: 299 (M⁺). ¹H-NMR (DMSO- d_6): δ 3.73 (m, 2H, 5'-H, 5"-H), 3.92 (m, 1H, 4'-H), 4.17 (dd, J=4.9, 5.0 Hz, 1H, 3'-H), 4.55 (dd, J = 6.6, 7.1 Hz, 1H, 2'-H), 5.19 (d, J = 4.9 Hz, 1H, 3'-OH), 5.24 (t, $J = 4.9 \,\text{Hz}$, 1H, 5'-OH), 5.34 (d, $J = 6.5 \,\text{Hz}$, 1H, 2'-OH), 6.84 (d, J = 7.5 Hz, 1H, 1'-H), 7.28–8.08 (m, 4H, Ar-H). ¹³C-NMR (DMSO- d_6): δ 61.1 (C-5'), 69.2 (C-3'), 70.2 (C-2'), 85.9 (C-4'), 90.2 (C-1'), 115.3, 121.8, 125.1, 125.8, 127.1, 139.7 (C-Ar), 191.2 (C-2).

3-(β-D-Ribofuranosyl)-2-thiobenzoxazole (5b). From 4b (818 mg, 2.0 mmol) in the manner described for 5a. Yield 475 mg (84%) as a white solid, mp 206-208°C (lit. [22] mp 183–185°C, 75%). MS; m/z: 283 (M⁺). ¹H-NMR (DMSO- d_6): δ 3.74 (m, 2H, 5'-H, 5"-H), 4.02 (m, 1H, 4'-H), 4.21 (m, 1H, 3'-H), 4.53 (dd, J=6.2, 7.3 Hz, 1H, 2'-H), 5.12 (d, J = 4.8 Hz, 1H, 3'-OH), 5.16 (t, J = 4.7 Hz, 1H, 5'-OH), 5.32 (d, J = 6.1 Hz, 1H, 2'-OH), 6.36 (d, J = 7.4 Hz, 1H, 1'-H), 7.25–8.00 (m, 4H, Ar-H). 13 C-NMR (DMSO- d_6): δ 61.1 (C-5'), 69.6 (C-3'), 70.9 (C-2'), 85.9 (C-4'), 90.6 (C-1'), 109.8, 112.9, 124.2, 124.8, 129.3, 146.5 (C-Ar), 180.12 (C-2).

5-Methoxy-2-(2',3',5'-tri-O-acetyl-β-D-ribofuranosylmercapto)benzothiazole (6). From 1c (985 mg, 5.0 mmol) in the manner described for 4a. Yield 1.77 g (78%) of **6** as pale yellow foam. MS; m/z: 455 (M⁺). Calculated for C₁₉H₂₁NO₈S₂ (455.49): C, 50.10; H, 4.65; N, 3.07. Found: C, 49.86; H, 4.53; N, 2.84. $[\alpha]_D + 21^\circ$ (c 0.7, CHCl₃). ¹H-NMR (CDCl₃): δ 2.10, 2.13, 2.14 (3s, 9H, 3 Ac), 3.86 (s, 3H, OCH₃), 4.12 (dd, J=7.1, 7.1 Hz, 1H, 5'-H), 4.46 (m, 2H, 4'-H, 5"-H), 5.47 (dd, J=5.2, 5.2 Hz, 1H, 3'-H), 5.60 (dd, J = 4.5, 4.8 Hz, 1H, 2'-H), 6.14 (d, J = 4.3 Hz, 1H, 1'-H), 6.96–7.63 (m, 3H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.0, 20.1, 20. 6 (3 Ac), 55.2 (OCH₃), 62.6 (C-5'), 70.8 (C-3'), 74.3 (C-2'), 80.3 (C-4'), 86.9 (C-1'), 104.6, 114.4, 120.9, 126.9, 153.9, 158.6 (C-Ar), 162.7 (C-2), 168.9, 169.2, 169.9 (3 CO).

5-Methoxy-2-(β-p-ribofuranosylmercapto)benzothiazole (7). From 6 (910 mg, 2.0 mmol) in the manner described for 5a. Yield 580 mg (88%) as a white solid, mp 125–127°C. MS; m/z: 329 (M⁺). Calculated for C₁₃H₁₅NO₅S₂ (329.38): C, 47.40; H, 4.59; N, 4.25. Found: C, 47.22; H, 4.82; N, 3.93. [α]_D –25° (c 0.5, MeOH). ¹H-NMR (DMSO-d₆): δ 3.50 (m, 2H, 5′-H, 5″-H), 3.84 (s, 3H, OCH₃), 3.90 (m, 1H, 4′-H), 4.04 (m, 1H, 3′-H), 4.15 (m, 1H, 2′-H) 4.87 (br. s, 1H, 3′-OH), 5.24 (br. s, 1H, 5′-OH), 5.65 (br. s, 1H, 2′-OH), 5.80 (d, J=4.6 Hz, 1H, 1′-H), 7.01–7.90 (m, 3H, Ar-H). ¹³C-NMR (DMSO-d₆): δ 55.7 (OCH₃), 61.8 (C-5′), 70.9 (C-3′), 75.6 (C-2′), 86.5 (C-4′), 89.8 (C-1′), 104.9, 114.2, 122.3, 126.7, 154.1, 158.9 (C-Ar), 166.0 (C-2).

3-(4-Morpholinomethyl)-2-thiobenzothiazole (8). A mixture of **1a** (167 mg, 1.0 mmol) and morpholine (87 mg, 1 mmol) in anhydrous EtOH (5 mL) and aqueous formaldehyde (1 mL) was stirred for 6 h at r. t. until the starting material was consumed (TLC). The separated solid was collected by filtration and recrystallized from EtOH to give 245 mg (92%) of **8** as a white solid, mp 140–142°C (lit.^[28] mp 149–150°C, 79%). MS; m/z = 266 (M⁺). ¹H NMR (DMSO- d_6): δ 2.66 (m, 4H, 2'-H, 6'-H), 3.52 (m, 4H, 3'-H, 5'-H), 5.15 (s, 2H, NCH₂N), 7.36–7.74 (m, 4H, Ar-H); ¹³C NMR (DMSO- d_6): δ 50.9 (C-2', C-6'), 65.8 (C-3', C-5'), 65.9 (CH₂), 114.4, 121.9, 124.8, 125.3, 126.9, 141.6 (C-Ar), 190.1 (C-2).

2-Allylmercaptobenzothiazole (9). To a solution of **1a** (167 mg, 1.0 mmol) in 1% aqueous NaOH (5 mL) was added allyl iodide (185 mg, 1.1 mmol) at r. t., with stirring. After 16 h at the same temperature, an aqueous solution of saturated NaHCO₃ was added and the reaction mixture was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic extract was washed with saturated NaCl solution, dried (MgSO₄), filtered, and evaporated to dryness. The residue was purified by flash chromatography (eluent: EtOAc/pet. ether 40–60°C, 10–30%) to afford **9** (200 mg, 96%) as pale yellow oil (lit., [30] oil). MS; m/z: 207 (M⁺). H-NMR (CDCl₃): δ 3.95 (m, 2H, CH₂), 5.14–5.37 (m, 2H, NCH₂), 6.00 (m, 1H, = CH), 7.22–7.87 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 35.9 (CH₂), 118.9 (= CH), 120.7 (NCH₂), 121.3, 124.0, 125.62, 132.1, 135.1, 153.0 (C-Ar), 165.9 (C-2).

2-(2',3',4',6'-Tetra-*O*-acetyl-β-D-glucopyranosylmercapto)benzothiazole (13a) and 3-(2',3',4',6'-Tetra-*O*-acetyl-β-D-glucopyranosyl)-2-thiobenzothiazole (14a). *General Procedure*: To a suspension of 1a (0.85 g, 5 mmol) in anhydrous MeCN (5 mL) at r. t. was added NaH (50%, 0.26 g, 5.0 mmol), and the mixture was stirred at the same temperature for 30 min. The mixture became clear after 15 min. The sugar bromide 10 (2.26 g, 5.5 mmol) was added, and the mixture was stirred at r. t. for 12 h until the starting material was consumed (TLC) and then filtered. Evaporation of the filtrate afforded an oil, purified by flash chromatography (eluent: EtOAc/pet. ether, 40–60°C, 10–30%,) to afford 13a (2.10 g, 84%) as a white foam (lit., ^[32] mp 138–139°C, 34%) and 0.01 g (4%) of 14a as pale yellow foam (lit., ^[32] mp 195–196°C, 3.8%).

13a: MS; m/z: 497 (M⁺). ¹H-NMR (CDCl₃): δ 2.03, 2.04, 2.05 (3s, 9H, 3 Ac), 3.94 (ddd, J= 2.2, 4.7, 6.9 Hz, 1H, 5′-H), 4.20 (dd, J= 2.0, 12.4 Hz, 1H, 6′-H), 4.33 (dd, J= 4.9, 12.4 Hz, 1H, 6″-H), 5.15–5.26 (m, 2H, 2′-H, 4′-H), 5.36 (dd, J= 9.2, 10.1 Hz, 1H, 3′-H), 5.60 (d, J= 10.2 Hz, 1H, 1′-H), 7.30–7.95 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.4, 20.5, 20.6 (4 Ac), 61.7 (C-6′), 67.9 (C-2′), 69.5

(C-3'), 73.6 (C-4'), 76.1 (C-5'), 83.8 (C-1'), 120.9, 122.2, 124.9, 126.3, 135.6, 152.5 (C-Ar); 161.7 (C-2), 169.2, 169.3, 169.9, 170.4 (4 CO).

14a: MS; m/z 497 (M⁺). ¹H-NMR(CDCl₃): δ 2.03, 2.05 2.08, 2.12 (4s, 12H, 4 Ac), 4.08 (m, 1H, 5'-H), 4.30 (m, 2H, 6'-H, 6"-H), 5.26 (dd, J = 9.7, 10.1 Hz, 1H, 4'-H), 5.57 (dd, J = 9.2, 9.5 Hz, 1H, 2'-H), 5.76 (dd, J = 9.4, 9.4 Hz, 1H, 3'-H), 6.93 (d, 1H, J = 9.5 Hz, 1H, 1'-H), 7.28–7.7.90 (m, 4H, Ar-H).

2-(2',3',4',6'-Tetra-O-benzoyl-β-D-glucopyranosylmercapto)benzoxazole (13b). From **1b** (0.76 g, 5.0 mmol) and **11** (3.62 g, 5.5 mmol) in the manner described for 13a. Yield 0.60 g (82%) as white foam. MS; m/z: 729 (M⁺). Calculated for C₄₁H₃₁NO₁₀S (729.75): C, 67.48; H, 4.28; N, 1.92. Found: C, 67.12; H, 4.59; N, 1.78. $[\alpha]_D + 54^\circ$ (c 1.2, CHCl₃). ¹H-NMR (CDCl₃): δ 4.48 (dd, J = 4.5, 5.8 Hz, 2H, 6'-H, 6"-H), 4.64 (dd, J = 5.6, 5.6 Hz, 1H, 5'-H), 5.69–5.81 (m, 2H, 3'-H, 4'-H), 6.07-6.14 (m, 2H, 1'-H, 2'-H), 7.22-7.7.95 (m, 24H, Ar-H). ¹³C-NMR $(CDCl_3)$: δ 63.1 (C-6'), 69.2 (C-2'), 70.4 (C-3'), 73.9 (C-4'), 77.0 (C-5'), 83.7 (C-1'), 110.11–151.9 (C-Ar), 161.1 (C-2), 165.16, 165.3, 165.7, 166.1 (4 CO).

5-Methoxy-2-(2',3',4',6'-tetra-O-acetyl-β-D-glucopyranosylmercapto)benzothiazole (13c). From 1c (1.15g, 5.0 mmol) in the manner described for 13a. Yield 0.88 g (83%) as pale yellow foam. MS; m/z: 527 (M⁺). Calculated for $C_{22}H_{25}NO_{10}S_2$ (527.56): C, 50.09; H, 4.78; N, 2.66. Found: C, 49.87; H, 5.08; N, 2.80. $[\alpha]_D + 72^\circ$ (c 0.7, CHCl₃). ¹H-NMR (CDCl₃): δ 2.03, 2.05, 2.06, 2.70 (4s, 12H, 4 Ac), 3.88 (s, 3H, OCH₃), 3.94 (ddd, J = 2.6, 5.0, 7.5 Hz, 1H, 5'-H), 4.21 (d, J = 12.4 Hz, 1H, 6'-H), 4.30 (dd, J=4.9, 12.4 Hz, 1H, 6"-H), 5.15-5.25 (m, 2H, 2'-H, 4'-H), 5.40 (m, 1H, 3'-H), 5.54 (d, J = 10.2 Hz, 1H, 1'-H), 7.00–7.65 (m, 3H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.3, 20.3, 20.4, 20.7 (4 Ac), 55.4 (OCH₃), 61.6 (C-6'), 67.8 (C-2'), 69.4 (C-3'); 73.5 (C-4'), 75.9 (C-5'), 83.8 (C-1'), 104.8, 114.9, 121.0, 127.3, 153.7, 158.9 (C-Ar), 162.6 (C-2), 169.2, 169.8, 170.3 (4 CO).

2-(2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosylmercapto)benzothiazole (13d). From 1a (0.84 g, 5.0 mmol) and 12 (2.26 g, 5.5 mmol) in the manner described for 13a. The product was purified by flash chromatography (eluent: EtOAc/pet. ether $40-60^{\circ}$ C 10-30%) to afford **13d** (2.25 g, 90%) as a colorless oil (lit.^[34] mp 110-111°C, 73%). MS; m/z: 497 (M⁺). ¹H-NMR (CDCl₃): δ 2.00, 2.01, 2.07, 2.18 (4s, 12H, 4 Ac), 3.88 (s, 3H, OCH₃), 4.07-4.19 (m, 3H, 5'-H, 6-H', 6"-H), 5.23 (dd, J = 3.4, 9.8 Hz, 1H, 4'-H), 5.44 (dd, J = 9.9, 10.1 Hz, 1H, 2'-H), 5.52 (d, J = 3.3 Hz,1H, 3'-H), 5.56 (d, J = 10.1 Hz, 1H, 1'-H), 7.34–7.95 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.3, 20.4, 20.4, 20.4 (4 Ac), 61.1 (C-6'), 67.7 (C-2'), 69.9 (C-3'), 71.4 (C-4'), 74.7 (C-5'), 84.24 (C-1'), 120.8, 122.0, 124.8, 126.1, 135.5, 152.4 (C-Ar), 161.9 (C-2), 169.3, 169.6, 169.9, 170.0 (4 CO).

2-(2',3',4',6'-Tetra-O-acetyl-β-D-galactopyranosylmercapto) benzoxazole (13e) and $3-(2',3',4',6'-\text{Tetra}-O-\text{acetyl}-\beta-\text{D-galactopyranosyl})-2-\text{thiobenzoxazole}$ (14b). From **1b** (0.76 g, 5.0 mmol) of **1b** and **12** (2.26 g, 5.5 mmol) in the manner described for **13a** and **14a**. Yield 1.09 g (45%) of **13e** as pale yellow foam and 0.92 g (38%) of **14b** as pale yellow oil.

13e: MS; m/z: 481 (M⁺). Calculated for C₂₁H₂₃NO₁₀S (481.47): C, 52.39; H, 4.81; N, 2.91. Found: C, 52.20; H, 4.96; N, 2.68. [α]_D + 11.5° (c 0.7, CHCl₃). ¹H-NMR (CDCl₃): δ 1.98, 2.02, 2.08, 2.19 (4s, 12H, 4 Ac), 4.14–4.29 (m, 3H, 5-H', 6'-H), 5.22 (dd, J = 3.4, 9.9 Hz, 1H, 4'-H), 5.30 (dd, J = 10.1, 10.1 Hz, 1H, 2'-H), 5.44 (dd, J = 3.4, 10.0 Hz, 1H, H-3'), 5.72 (d, J = 10.2 Hz, 1H, 1'-H), 7.20–7.70 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.5, 20.6, 20.6, 20.7 (4 Ac), 61.2 (C-6'), 67.0 (C-2'), 67.1 (C-3'), 71.7 (C-4'), 75.0 (C-5'), 83.9 (C-1'), 110.2, 118.9, 124.7, 125.9, 141.5, 151.9 (C-Ar), 161.0 (C-2), 169.7, 169.9, 170.2, 170.4 (4 CO).

14b: MS; m/z: 481 (M⁺). Calculated for C₂₁H₂₃NO₁₀S (481.47): C, 52.39; H, 4.81; N, 2.91. Found: C, 52.28; H, 4.94; N, 2.72. ¹H-NMR (CDCl₃): δ 2.00, 2.03, 2.07, 2.22 (4s, 12H, 4 Ac), 4.16–4.30 (m, 3H, 5'-H, 6'-H, 6"-H), 5.24 (dd, J=9.6, 10.1 Hz, 1H, 4'-H), 5.38 (dd, J=9.2, 9.5 Hz, 1H, 2'-H), 5.63 (dd, J=9.4, 9.4 Hz, 1H, 3'-H), 6.32 (d, J=9.1 Hz, 1H, 1'-H), 7.20–7.50 (m, 4H, Ar-H).

5-Methoxy-2-(2',3',4',6'-tetra-*O*-acetyl-β-D-galactopyranosylmercapto)benzothiazole (13f) and 5-Methoxy-3-(2',3',4',6'-tetra-*O*-acetyl-β-D-galactopyranosyl)-2-thiobenzothiazole (14c). From 1c (1.15 g, 5.0 mmol) and 12 (2.26 g, 5.5 mmol) in the manner described for 13a and 14a. Yield 1.60 g (60%) of 13f as pale yellow foam and 0.58 g (22%) of 14c as pale yellow foam.

13f: MS; m/z: 527 (M⁺). Calculated for C₂₂H₂₅NO₁₀S₂ (527.56): C, 50.09; H, 4.78; N, 2.66. Found: C, 50.26; H, 5.16; N, 2.52. ¹H-NMR (CDCl₃): δ 1.98, 2.02, 2.08, 2.19 (4s, 12H, 4 Ac), 3.82 (s, 3H, OCH₃), 4.12–4.32 (m, 3H, 5-H', 6'-H, 6"-H), 5.22 (dd, J = 3.4, 9.8 Hz, 1H, 4'-H), 5.30 (dd, J = 10.1, 10.1 Hz, 1H, 2'-H), 5.45 (d, J = 3.4 Hz, 1H, H-3'), 5.74 (d, J = 10.2 Hz, 1H, 1'-H), 7.15–7.65 (m, 3H, Ar-H).

14c: MS; m/z: 527 (M⁺). Calculated for $C_{22}H_{25}NO_{10}S_2$ (527.56): C, 50.09; H, 4.78; N, 2.66. Found: C, 49.92; H, 5.10; N, 2.94. ¹H-NMR (CDCl₃): δ 2.00, 2.03, 2.07, 2.22 (4s, 12H, 4 Ac), 3.86 s, 3H, OCH₃), 4.20–4.36 (m, 3H, 5'-H, 6'-H, 6"-H), 5.24 (dd, J=9.6, 10.2 Hz, 1H, 4'-H), 5.38 (dd, J=9.3, 9.5 Hz, 1H, 2'-H), 5.64 (dd, J=9.4, 9.4 Hz, 1H, 3'-H), 6.33 (d, J=9.1 Hz, 1H, 1'-H), 7.05–7.53 (m, 3H, Ar-H).

2-(β-D-Glucopyranosylmercapto)benzothiazole (15a). From **13a** (0.50 g, 1.0 mmol) of **13a** in the manner described for **5a**. The product was chromatographed on silica gel using MeOH, in gradient, (0–10%) and CH₂Cl₂, as eluent to give **15a** (0.28 g, 86%) as a white foam (lit., ^[32] mp 110–180°C, 75%). MS; m/z: 329 (M⁺). ¹H-NMR (CD₃OD- d_4): δ 3.17–3.36 (m, 4H, 4'-H, 5'-H, 6'-H, 6"-H), 3.60 (dd, J = 4.3, 9.3 Hz, 1H, 2'-H), 3.78 (dd, J = 1.6, 12.0 Hz, 1H, 3'-H), 5.57 (d, 1H, J = 9.1 Hz, 1'-H); 7.20–7.78 (m, 4H, Ar-H).

2-(β-D-Glucopyranosylmercapto)benzoxazole (15b). From **13b** (0.73 g, 1.0 mmol) of **13b** in the manner described for **5a**. Yield 0.25 g (80%) as white foam. MS; m/z: 313 (M⁺). Calculated for C₁₃H₁₅NO₆S (313.32): C, 49.83; H, 4.82; N, 4.47. Found: C, 49.59; H, 4.98; N, 4.60. [α]_D –106° (c 0.5, MeOH). ¹H-NMR (CD₃OD- d_4): δ 3.15–3.36 (m, 4H, 4'-H, 5'-H, 6'-H, 6"-H), 3.60 (dd, J=4.2, 9.4 Hz, 1H, 2'-H), 3.78 (dd, J=1.6, 12.1 Hz, 1H, 3'-H), 5.57 (d, J=9.4 Hz, 1H, 1'-H), 7.00–8.00 (m, 4H, Ar-H).

5-Methoxy-2-(β -D-glucopyranosylmercapto)benzothiazole (15c). From 13c (0.53 g, 1.0 mmol) in the manner described for 5a. Yield 0.30 g (84%) as a white solid,

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved

mp 127–129°C. MS; m/z: 359 (M⁺). Calculated for C₁₄H₁₇NO₆S₂ (359.41): C, 46.79; H, 4.77; N, 3.90. Found: C, 46.43; H, 4.60; N, 4.04. $[\alpha]_D - 87^\circ$ (c 0.23, MeOH). H-NMR (CD₃OD-*d*₄): δ 3.32 (s, 3H, OCH₃), 3.50 (m, 5H, 2'-H, 4'-H, 5'-H, 6'-H, 6"-H), 3.77 (dd, J = 4.0, 12.2 Hz, 1H, 3'-H), 5.18 (d, 1H, J = 9.2 Hz, 1'-H), 6.94-7.68 (m, 3H, 1'-H), 6.94-7.68 (m, 3-H), 6.94-7Ar-H). ¹³C-NMR (CD₃OD-d₄): δ 55.5 (OCH₃), 61.5 (C-6'), 69.8 (C-2'), 72.5 (C-3'), 78.3 (C-4'), 80.9 (C-5'), 86. 6 (C-1'), 104.7, 114.1, 121.2, 127.0, 153.9, 158.8 (C-Ar), 165.5 (C-2).

2-(β-D-Galactopyranosylmercapto)benzothiazole (15d). From 13d (0.50 g, 1.0 mmol) in the manner described for 5a. Yield 0.28 g (85%) as a white solid, mp 118–120°C (lit., [32] mp 100–195°C, 79%). MS; m/z: 329 (M⁺). $[\alpha]_D + 5.0^\circ$ (c 0.7, MeOH). 1 H-NMR (DMSO- d_6): δ 3.37–3.80 (m, 6H, 2'-H, 3'-H, 4'-H, 5'-H, 6'-H, 6"-H), 4.64 (d, 1H, $J = 4.6 \,\text{Hz}$, 6'-OH), 4.70 (d, 1H, $J = 5.2 \,\text{Hz}$, 4'-OH), 5.05 (d, 1H, J = 5.5 Hz, 3'-OH), 5.10 (d, 1H, J = 9.7 Hz, 1'-H), 5.50 (d, 1H, J = 6.0 Hz, 2'-OH), 7.37–8.04 (m, 4H, Ar-H). ¹³C-NMR (DMSO-d₆): δ 60.3 (C-6'), 68.4 (C-2'), 69.6 (C-3'), 74.7 (C-4'), 79.9 (C-5'), 87.2 (C-1'), 121.5, 121.8, 124.7, 126.5, 135.2, 152.5 (C-Ar), 165.4 (C-2).

2-(β-D-Galactopyranosylmercapto)benzoxazole (15e). From 13e 1.0 mmol) in the manner described for 5a. Yield 0.26 g (84%) as pale yellow foam. MS; m/z: 313 (M⁺). Calculated for C₁₃H₁₅NO₆S (313.33): C, 49.83; H, 4.82; N, 4.47. Found: C, 49.62; H, 5.00; N, 4.56. $[\alpha]_D$ –71° (c 0.4, MeOH). ¹H-NMR (DMSO- d_6): δ 3.35–3.76 (m, 6H, 2'-H, 3'-H, 4'-H, 5'-H, 6'-H, 6"-H), 4.62 (d, $J = 5.0 \,\mathrm{Hz}$, 1H, 6'-OH), 4.65 (d, $J = 5.8 \,\mathrm{Hz}$, 1H, 4'-OH), 5.06 (d, $J = 5.6 \,\mathrm{Hz}$, 1H, 3'-OH), 5.36 (d, J = 9.8 Hz, 1H, 1'-H), 5.53 (d, J = 6.2 Hz, 1H, 2'-OH), 7.33–7.68 (m, 4H, Ar-H). ¹³C-NMR (DMSO- d_6): δ 60.1 (C-6'), 68.12 (C-2'), 69.3 (C-3'), 74.3 (C-4'), 79.8 (C-5'), 9.70 (C-1'), 110.2, 118.3, 124.5, 124.6, 141.1, 151.2 (C-Ar), 162.5 (C-2).

5-Methoxy-2-(β-D-galactopyranosylmercapto)benzothiazole (15f). From 13f (0.53 g, 1.0 mmol) in the manner described for 5a. Yield 0.29 g (80%) as pale yellow foam. MS; m/z: 359 (M⁺). Calculated for $C_{14}H_{17}NO_6S_2$ (359.41): C, 46.79; H, 4.77; N, 3.90. Found: C, 46.50; H, 4.94; N, 3.58. $[\alpha]_D$ -20° (c 0.2, MeOH). ¹H-NMR (DMSO-d₆): δ 3.30–3.83 (m, 9H, OCH₃, 2'-H, 3'-H, 4'-H, 5'-H, 6'-H, 6"-H), 4.59– 4.68 (m, 2H, 4'-OH, 6'-OH), 5.00 (d, 1H, J = 5.4 Hz, 3'-OH), 5.08 (d, 1H, J = 9.7 Hz, Hz, 1'-H), 5.45 (d, 1H, J = 6.1 Hz, 2'-OH), 6.99–7.90 (m, 3H, Ar-H).

3-(β-D-Galactopyranosyl)-2-thiobenzoxazole (16a). From **14b** (0.48 g, 1.0 mmol) in the manner described for 5a. Yield 0.26 g (83%) of 16a as pale yellow foam. MS; m/z: 313 (M⁺). Calculated for C₁₃H₁₅NO₆S (313.33): C, 49.83; H, 4.83; N, 4.47. Found: C, 49.72; H, 4.98; N, 4.18. $[\alpha]_D + 56^\circ$ (c 0.4, MeOH). ¹H-NMR (CD₃COCD₃-d₆): δ 3.82–3.91 (m, 4H, 4'-H, 5'-H, 6'-H, 6"-H), 4.05 (br. s, 1H, 6'-H) OH), 4.14 (m, 1H, 3'-H), 4.39–4.45 (m, 2H, 3'-OH, 4'-OH), 4.48 (d, J = 9.5 Hz, 1H, 2'-H), 4.72 (d, J = 3.8 Hz, 1H, 2'-OH), 6.00 (d, J = 9.1 Hz, 1H, H-1'), 7.31– 7.73 (m, 4H, Ar-H). 13 C-NMR (DMSO- d_6): δ 62.4 (C-6'), 69.2 (C-2'), 69.9 (C-3'), 74.8 (C-4'), 78.9 (C-5'), 88.4 (C-1'), 110.7, 113.5, 125.13, 125.7, 140.8, 147.8 (C-Ar), 181.4 (C-2).

5-Methoxy-3-(β-D-galactopyranosyl)-2-thiobenzothiazole (16b). From 14c (0.53 g, 1.0 mmol) in the manner described for **5a**. Yield 0.28 g (77%) as pale yellow foam. MS; m/z: 359 (M⁺). Calculated for C₁₄H₁₇NO₆S₂ (359.41): C, 46.79; H, 4.77; N, 3.90. Found: C, 46.46; H, 4.88; N, 3.80. [α]_D + 15° (c 0.2, MeOH). ¹H-NMR (CD₃COCD₃-d₆): δ 3.83 (s, 3H, OCH₃), 4.03–4.53 (m, 5H, 3′-H, 4′-H, 5′-H, 6′-H), 4.63 (dd, J= 8.8, 9.5 Hz, 1H, 2′-H), 6.60 (d, J= 9.2 Hz, 1H, H-1′), 6.91–7.90 (m, 3H, Ar-H).

2-(2',3',4',6'-Tetra-*O*-acetyl-β-D-glucopyranosylmercapto)pyridine (18a). From 17 (0.55 g, 5.0 mmol) in the manner described for 13a. The product was purified by flash chromatography using CH₂Cl₂ as eluent to afford 18a (1.70 g, 77%) as pale yellow solid, mp 140–142°C (lit., $^{[35]}$ mp 120–123°C, 72%). MS; m/z: 441 (M⁺). ¹H-NMR (CDCl₃): δ 2.01, 2.02, 2.03, 2.04 (4s, 12H, 4 Ac), 3.88 (m, 1H, 5'-H), 4.12 (dd, J= 2.2, 12.3 Hz, 1H, 6'-H), 4.25 (dd, J= 4.7, 12.4 Hz, 1H, 6"-H), 5.16 (d, J= 9.9 Hz, 1H, 4'-H), 5.25 (d, J= 10.2 Hz, 1H, 2'-H), 5.35 (dd, J= 9.3, 9.3 Hz, 1H, 3'-H), 5.84 (d, J= 10.4 Hz, 1H, H-1'), 7.05–8.46 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.6, 20.6, 20.7, 20.7 (4 Ac), 62.0 (C-6') 68.3 (C-2'), 69.5 (C-3'), 74.2 (C-4'), 75.9 (C-5'), 81.6 (C-1'), 120.90, 123.3, 136.6, 149.7, 155.3 (C-Ar), 169.4, 169.5, 170.2, 170.6 (4 CO).

2-(2',3',4',6'-Tetra-*O*-acetyl-β-D-galactopyranosylmercapto)pyridine (18b). From 17 (0.55 g, 5.0 mmol) and 12 (2.26 g, 5.5 mmol) in the manner described for 13a. The product was purified by flash chromatography (eluent, CH_2Cl_2) to afford 18b (1.90 g, 86%) as pale yellow foam (lit., ^[35] syrup, 85%). MS; m/z: 441 (M⁺). ¹H-NMR (CDCl₃): δ 1.98, 2.02, 2.15, 2.22 (4s, 12H, 4 Ac), 4.10–4.17 (m, 3H, 5'-H, 6'-H, 6"-H), 5.22 (dd, J=3.4, 9.9 Hz, 1H, 4'-H), 5.40 (d, J=10.2 Hz, 1H, 2'-H), 5.50 (d, J=3.4 Hz, 1H, 3'-H), 5.84 (d, J=10.4 Hz, 1H, 1'-H), 7.09–8.47 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.3, 20.3, 20.4, 20.5 (4 Ac), 61.1 (C-6'), 66.5 (C-2'), 67.2 (C-3'), 71.7 (C-4'), 74.2 (C-5'), 81.8 (C-1'), 120.7, 123.1, 136.6, 149.2, 155.1 (C-Ar), 169.4, 169.7, 169.9, 170.0 (4 CO).

2-(β-D-Glucopyranosylmercapto)pyridine (19a). From **18a** (0.55 g, 1.0 mmol) in the manner described for **15a**. The product was chromatographed on silica gel using MeOH, in gradient, (0–5%) and CH₂Cl₂ as eluent to give **19a** (0.27 g, 97%) as a white foam (lit., $^{[37]}$ mp 93–101°C, 75%). MS; m/z: 273 (M⁺). 1 H-NMR (CD₃OD- d_4): δ 3.27–3.41 (m, 4H, 4'-H, 5'-H, 6'-H, 6"-H), 3.60 (m, 1H, 3'-H), 3.76 (m, 1H, 2'-H), 5.12(d, J = 9.8 Hz, 1H, 1'-H), 7.04–8.29 (m, 4H, Ar-H). 13 C-NMR (DMSO- d_6): δ 62.6 (C-6'), 71.1 (C-2'), 73.7 (C-3'), 79.5 (C-4'), 82.0 (C-5'), 86.1 (C-1'), 122.0, 124.5, 138.7, 150.1 (C-Ar), 159.1 (C-2).

2-(β-D-Galactopyranosylmercapto)pyridine (19b). From **18b** (0.50 g, 1.0 mmol) in the manner described for **5a**. Yield 257 mg (85%) as a yellow solid, mp 162–164°C. MS; m/z: 273 (M⁺). Calculated for C₁₁H₁₅NO₅S (273.30): C, 48.34; H, 5.53; N, 5.13. Found: C, 48.00; H, 5.68; N, 4.82. [α]_D –38°C (c 0.5, MeOH). ¹H-NMR (DMSO- d_6): δ 3.15–3.74 (m, 6H, 2'-H, 3'-H, 4'-H, 5'-H, 6'-H), 4.54–4.63 (m, 2H, 4'-OH, 6'-OH), 4.93 (d, J=5.6 Hz, 1H, 2'-OH), 5.07 (d, J=9.7 Hz, 1H, 1'-H), 5.24 (d, J=5.8 Hz, 1H, 2'-OH), 7.11–8.37 (m, 4H, Ar-H). ¹³C-NMR

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved

 $(DMSO-\delta_6)$: δ 60. 7 (C-6'), 68.6 (C-2'), 69.2 (C-3'), 75.0 (C-4'), 79.9 (C-5'), 84.8 (C-6') 1'), 120.46, 122.1, 137.2, 149.37 (C-Ar), 158.8 (C-2).

2-(2',3',5'-Tri-O-acetyl-β-D-ribofuranosylmercapto)pyridine (0.55 g, 5.0 mmol) in the manner described for 4a. The product was purified by flash chromatography (eluent: EtOAc/pet. ether, 40–60°C, 10–30%,) to give 21 (1.77 g, 96%) as a yellow oil (lit., [36] syrup, 95%). MS; m/z: 369 (M⁺). ¹H-NMR (CDCl₃): δ 1.97, 1.98, 1.99 (3s, 9H, 3 Ac), 4.03 (dd, J = 5.0, 12.9 Hz, 1H, 5'-H), 4.27 (m, 2H, 4'-H, 5"-H), 5.32 (dd, J = 5.0, 5.0 Hz, 1H, 3'-H), 5.39 (dd, J = 4.7, 5.0 Hz, 1H, 2'-H), 6.09 (d, J = 4.6 Hz, 1H, 1'-H.), 6.93–8.34 (m, 4H, Ar-H). ¹³C-NMR (CDCl₃): δ 20.5, 20. 8, 22.5 (3 Ac), 63.2 (C-5'), 71.4 (C-3'), 74.5 (C-2'), 80.1 (C-4'), 84.9 (C-1'), 120.7 (C-4), 123.1 (C-5), 136.7 (C-3), 149.7 (C-6), 156.2 (C-2), 169.5, 169.7, 170.4 (3 CO).

2-(β-D-Ribofuranosylmercapto)pyridine (22). From **21** (0.74 g, 2.0 mmol) in the manner described for 5a. The product was chromatographed on silica gel using MeOH, in gradient, (0-5%) and CH_2Cl_2 as eluent to give 22 (0.44 g, 90%) as a yellow solid, mp 136–138°C. MS; m/z: 243 (M⁺). Calculated for C₁₀H₁₃NO₄S (243.27): C. 49.37; H, 5.38; N, 5.76. Found: C, 49.15; H, 5.62; N, 5.70. 243 (M⁺). $[\alpha]_D + 44^\circ$ (c 2.0, MeOH). H-NMR (DMSO- d_6): δ 3.50 (m, 2H, 5'-H, 5"-H), 3.90 (m, 1H, 4'-H), 4.02 (m, 2H, 2'-H, 3'-H), 4.70 (t, J = 5.6 Hz, 1H, 5'-OH), 4.96 (d, J = 5.3 Hz, 1H, 3'-OH), 5.34 (d, J = 5.5 Hz, 1H, 2'-OH), 5.80 (d, J = 4.6 Hz, 1H, 1'-H), 7.09-8.42 (m, 4H, Ar-H). 13 C-NMR (DMSO- d_6): δ 62.1 (C-5'), 71.0 (C-3'), 75.2 (C-2'), 85.5 (C-4'), 86.8 (C-1') 120.2 (C-4), 122.5 (C-5), 136.8 (C-3), 149.3 (C-6), 158.13 (C-2).

ACKNOWLEDGMENTS

We thank ADIR (Groupe Servier, Paris) for carrying out the antitumor testing of the deprotected nucleosides. A. I. K. is grateful for an Alexander von Humboldt Fellowship.

REFERENCES

- Legler, G. Adv. Carbohydr. Chem. Biochem. 1990, 48, 319–384.
- 2. Ganem, B.A. Acc. Chem. Res. 1996, 29, 340-347.
- Winchester, B.; Fleet, G.W.J. Glycobiology **1992**, *2*, 199–210.
- Arends, J.; Willms, B.H.L. Horm. Metab. Res. 1986, 18, 761-764.
- Humphries, M.J.; Matsumoto, K.; White, S.L.; Olden, K. Cancer Res. 1986, 46, 5215-5222.
- 6. Puls, W.; Keup, U.; Krause, P.; Thomas, G.; Hoffmeister, F. Naturwissenschaften 1977, 64, 536-537.
- 7. Nash, R.J.; Fenton, K.A.; Gatehouse, A.M.R.; Bell, E.A. Entomol. Exp. Appl. **1986**, 2, 71–77.
- Gruters, R.A.; Neefjes, J.J.; Tersmette, M.; De Goade, R.E.Y.; Tulp, A.; Huisman, H.G.; Miedema, F.; Ploegh, H.L. Nature (London) 1987, 330, 74-77.

- 9. Karpas, A.; Fleet, G.W.J.; Dwek, R.A.; Petursson, S.; Namgoong, S.K.; Ramsden, N.G.; Jacob, G.S.; Rademacher, T.W. Proc. Natl. Acad. Sci. USA. 1988, 85, 9229–9233.
- 10. Fleet, G.W.J.; Karpas, A.; Dwek, R.A.; Fellows, L.E.; Tyms, A.S.; Petursson, S.; Namgoong, S.K.; Ramsden, N.G.; Smith, P.W.; Son, J.C.; Wilson, F.; Witty, D.R.; Jacob, G.S.; Rademacher, T.W. FEBS Lett. **1988**, *237*, 128–132.
- 11. Sunkara, P.S.; Taylor, D.L.; Kang, M.S.; Bowlin, T.L.; Liu, P.S.; Tyms, A.S.; Sjoerdsma, A. Lancet **1989**, 1206–1207.
- 12. El-Barbary, A.A.; Khodair, A.I.; Pedersen, E.B.; Nielsen, C. J. Med. Chem. **1994**, *37*, 73–77.
- Khodair, A.I.; EL-Subagh, H.I.; El-Emam, A.A. Boll. Chim. Farm. 1997, 136, 561–567.
- 14. Al-Obaid, A.M.; EL-Subagh, H.I.; Khodair, A.I.; Elmazar, M.M.A. Anti-Cancer Drugs 1996, 7, 873–880.
- 15. Khodair, A.I. Phosphorus, Sulfur and Silicon 1997, 122, 9-26.
- 16. Khodair, A.I.; Gesson, J.P. Phosphorus, Sulfur and Silicon 1998, 142, 167–190.
- 17. Ram, V.J.; Pandey, H.N. Chem. Pharm. Bull. **1974**, *22*, 2778–2783, and Refs. therein.
- 18. Walczynski, K.; Guryn, R.; Zuiderveld, O.P.; Timmerman, H. Arch. Pharm. Pharm. Med. Chem. **1999**, *332*, 385–388.
- Kieda, C.; Monsigny, M. Invasion and Metastasis 1986, 6, 347; C.A. 1987, 106, 3463w.
- 20. Monsigny, M.; Roche, A.C.; Midoux, P.; Kiedu, C.; Mayer, R. Lectins and Glycoconjugates in Oncology: Structure, Function, Clinical Application; Gabius, H.J., Nagel, G.A., Eds.; Springer-Verlag: Heideberg, 1988.
- Vorbruggen, H.; Krolikiewicz, K.; Bennua, B. Chem. Ber. 1981, 114, 1234– 1255.
- 22. Gosselin, G.; Loukil, H.F.; Mathieu, A.; Mesli, A.; Imbach, J.-L. J. Heterocyclic Chem. **1978**, *15*, 657–664.
- 23. Piantini, U.; Sorensen, O.W.; Ernst, R.R. J. Am. Chem. Soc. **1982**, *104*, 6800–6801
- 24. Bothner-By, A.A.; Stephensen, R.L.; Lee, J.; Warren, C.D.; Jeanloz, R.W. J. Am. Chem. Soc. **1984**, *106*, 811–813.
- 25. Bax, A.; Davis, D.G. J. Mag. Reson. 1985, 63, 207-213.
- 26. Griesinger, C.; Ernst, R.R. J. Magn. Reson. 1987, 75, 261–271.
- 27. Al-Masoudi, N.A.; Al-Soud, Y.A.; Geyer, A. Spectroscopy Lett. **1998**, *31*, 1031–1038.
- 28. Halasa, A.F.; Smith, G.E.P. J. Org. Chem. 1971, 36, 636–641.
- 29. Schantle, J.G.; Lagoja, I.M. Heterocycles 1997, 45, 691–700.
 - 0. Baudin, J.B.; Hareau, G.; Julia, S.A.; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. **1993**, *130*, 856–878.
- 31. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel's **1989**, *5*, 646–647.
- 32. Zinner, H.; Peseke, K. Chem. Ber. **1963**, *98*, 3508–3519.
- 33. Lemieux, R.U. Methods Carbohydr. Chem. 1963, 2, 221–222.
- 34. Hutchison, D.J. Ann. N. Y. Acad. Sci. 1971, 186, 496-500.
- 35. Mereyala, H.B.; Reddy, G.V. Tetrahedron 1991, 47, 6435-6448.

Copyright © 2003 by Marcel Dekker, Inc. All rights reserved.

- 36. Fourrey, J.L.; Jouin, P. J. Org. Chem. 1979, 44, 1892–1895.
- Wagner, G.; Pischel, H. Arch. Pharm. (Weinheim, Ger.) 1963, 296, 576-590.
- Stewart, A.O.; Williams, R.M. J. Am. Chem. Soc. 1985, 107, 4289-4296.
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Poull, K.; Vistica, D.; Hose, C.; Langly, J.; Cronise, P.; Viagro-Wolff, A.; Gray-Goodrish, M.; Compell, H.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757-766.
- 40. Poull, K.; Boyd, M. Drug. Dev. Res. 1995, 34, 91–109.

Received January 15, 2003 Accepted August 20, 2003